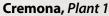


GASKET MATERIALS



Gasket Division

EUROGUARCO SpA Italy

La Spezia, Plant 1

Cremona, Plant 2

The Company Since its foundation, in 1958,

the company has steadily expanded by growth and acquisitions, focusing on the manufacturing and trading of different lines of products: Industrial gaskets and gasket materials, valves, piping and insulating products.

Customers around the globe, in a variety of industries - such Oil & Gas, Chemical Processing, Power Generation, Transportation, ... - rely on our high-quality products, backed by our special attention for customer service and technical support.

D.

Euroguarco Quality System is certified according to ISO 9001. Sector certifications include: EN 9100, ISO/TS 29001, API 6D license, Directive 97/23/CE (PED), ATEX.

La Spezia, Plant 2

OEUROGUARCO

Index

ODRA!

Compressed Synthetic Fibre gasket materials FASIT.....page 4÷7 FASIT Chemical Resistance Chart.....page 8÷9 **Expanded Flexible Graphite** gasket materials GRA-FLEXpage 10÷13 PTFE-based gasket materials GUAFLON.....page 14÷16 GRAFEX, GUAFLON Chemical Resistance Chart.....page 17÷18 **Gasket Materials** Application Quality Control Parameters.....page 19

Euroguarco gasket materials are designed for fabrication of flat gaskets covering a wide range of industrial applications, providing sealing performance with a variety of specifications. With heightened awareness of safety and environmental issues, reducing emissions from flanged assemblies has become a major priority for industry. It is therefore crucial that

The information contained herein is given in good faith, but no liability will be accepted in relation to same.

The revision of products, pursuant to Euroguarco's policy of continuous development, as well as the acquisition of further information, may necessitate revisions to parts or all of this document.

As the company's products are used for a multiplicity of purposes, and as Euroguarco has no control over the method of their application or use, Euroguarco must exclude all conditions or warranties,

the correct material is selected and installed appropriately, to achieve a safe and reliable seal. Detailed Technical Datasheets, Material Safety Datasheets and gasket assembly factors are available for each material style. Assembly and Tightness Parameters of gasketed bolted joints can be calculated in order to achieve best gasket performance and ensure joint

express or implied, as to their products and/or their fitness for any particular purpose.

Euroguarco SpA guarantees that any product of its manufacture, which, upon examination by a Euroguarco representative, is found to be defective in either workmanship or material whereby it is suitable under proper usage and service for the purpose for which is was designed, will be replaced or repaired free of charge including transportation charges but not cost of installation or, at our option, the purchase price will be refunded. tightness by using GUARCO-AID, a simple PC application based either on ASME Boiler and Pressure Vessel Code (gasket factors m and y) or on PVRC method (gasket factors Gb, a, Gs).

Further information on gasket materials and criteria for material selection are provided in the Euroguarco handbook Guide to Gaskets for Static Joints.

WARNING: Properties/applications shown throughout this brochure are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations consult Euroguarco. Failure to select the proper sealing products could result in property damage and/or serious personal injury. Performance data published in this brochure has been developed from field testing, customer field reports and/or in-house testing. While the utmost care has been used in compiling this brochure, we assume no responsibility for errors. Specificiations subject to change without notice.

Compressed Synthetic Fibre Gasket Materials

FASIT is a line of highly versatile gasket sheet materials, widely used with pipes and pressure vessels thanks to the ability to effectively seal over an extremely broad range of service conditions.

FASIT CSF jointing sheets are manufactured from a viscous granular mixture of high-strength short fibres, heat-resistant fillers, elastomeric binders and various chemicals, which is vulcanised into sheet form under the pressure of two counter-rotating steel rollers (calenders).

The effectiveness of FASIT gaskets is due to their resistance against plastic deformation, provided by the network of reinforcing fibres interlocked with the fillers and the elastomeric matrix.

Fibres

The reinforcing fibres are the most crucial components.

They must have high modulus and tensile strength, thermal and chemical stability, and capacity to hook up to the other ingredients.

Several types of fibres have been tested over the intervening years since asbestos was banned in the early 1990's. The best performances have been shown by aramid fibres (i.e. Dupont's Kevlar[®]), specifically poly-para-phenylene-terephthalamide fibres. These fibres make a percentage, typically ranging from 7 to 15%, of the mixture in the form of "pulp" of short fibres that undergo a process of fibrillation, which leads to the formation of thin branches (fibrils).

Micro-photo of aramid Kevlar[®] (right) and inorganic (left) fibre in a FASIT sheet. Well-opened fibrils on the Kevlar[®] fibre surface allow interlocking with the elastomeric matrix, thereby imparting to the material excellent resistance against plastic deformation. This characteristic results in high stress retention and sealing performance of the gasket.

Fibrils drastically increase the specific surface of the fibre, so enhancing their interlocking with the other components. Fibres are also doped with chemicals that affect their surface electrostatic charge, in order to improve their mixing within the elastomeric matrix.

Aramid fibres owe their excellent thermal, chemical and mechanical properties to their chemical composition: carbon-nitrogen double bonds provide stiffness to the polymeric chain, which develops along ordered parallel planes.

Such a structure is, however, subject to attack by steam, which hydrolyzes the inter-molecular bonds, and by strong acids and alkalis. When such media are present, the integrity of aramid fibres is left up to the shield provided by the rubber matrix.

Glass, mineral, and carbon fibres withstand higher temperature compared to aramid fibres, but they are more brittle, have no fibrils (that is less interlocking ability),

Moreover, it protects the gasket fibres and fillers from chemical attack. The softening of the binder between 100 and 150°C is beneficial to gasket tightness, as it helps the binder to flow and fill up all porosity. Above this temperature, however, and over time, the binder starts to harden. Nevertheless, since the gasket mechanical properties are provided by the fibres, this effect does not hinder the gasket performance.

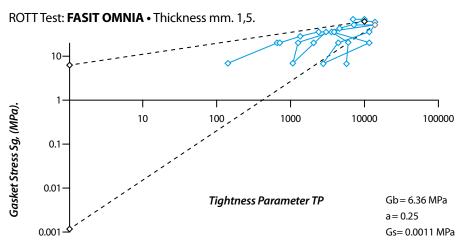
In conclusion, the binder is selected essentially with reference to the chemical resistance that it will impart to the gasket. CSM or EPDM binders are used in CSF styles that must operate in chemically-aggressive environments.

Fillers

The fillers (70 - 80% in weight) have their own relevance too, essentially linked to their shape, specific surface ad electrostatic charge: all factors that affect their ability to intimately mix with the reinforcing fibres. Their structure can be fibrous

and have a tendency to line along the rolling direction during the calendering process, which leads to mechanical anisotropy in the sheets. As a consequence they are used always in combination with aramid fibres in FASIT styles that are suitable for steam and high temperature applications. For applications with non-aggressive media at low temperature, organic fibres such as polyester and cellulose are used in price-effective products.

Binders


The elastomeric binder typically represents 10 to 25% of the sheet weight. Only certain types of rubber can be used, in relation to their rheological properties and ability to wet fibres and fillers. Most common binders are NBR, SBR, NR, CR, EPDM and CSM. In a CSF gasket it is essentially the binder that blocks the path of the sealed medium by closing the porosity between fibres and fillers, and by matching and filling up all the irregularities of the flange faces.

(rock wool, glass wool, ceramics), flaky (graphite), or granular (kaolin, sulphates, oxide particles, etc.), with dimensions that range from sub-micron to hundreds of microns, and a specific surface that can exceed 100 m2/g, as it is the case for micro-porous active silica.

Inserts

The composition of some CSF styles includes reinforcing inserts, such as wire net or mesh, or metallic perforated sheet: such inserts increase the capacity of the gasket to withstand compressive load and therefore extend its suitability to higher service pressure.

FASIT[®]

Sheet Style	202	205	OIL	OMNIA
Composition	Cellulose and synthetic fibres, NBR.	Synthetic fibres, NBR.	Aramid fibres, NBR.	Aramid fibres, NBR.
Main characteristics and applications	Price effective. Suitable for thermo-hydraulic applications at low bolt loads. For use with water, oils, alcohols and glycols.	Suitable for and acqueous and acqueous thermo-hydraulic solutions, oils, applications fuels, alcohols, alcohols, glycols, weak alkalis a organic acids. oils, alcohols and acqueous solutions, oils, alcohols, alco		Universal purpose in the oil, energy and chemical industries. Oils, fuels, solvents, gases, cooling agents, alcohols, weak alkalis, organic acids. Excellent sealability.
Recommended Service Limits (°C)* Max. short term temperature	180	200	280	350
Max. continuous temperature with non-aggressive media	140	150	220	250
Max. continuous temperature with steam	120	120	180	200
Max. operating pressure (bar)	40	60	80	100
Stress retention (N/mm2) - DIN 52913 16 hrs, 175°C, 50 N/mm2 16 hrs, 300°C, 50 N/mm2	20	23	25 20	28 22
Specific leakage rate (mg/m.sec) DIN 3535/6	0.08	0.08	0.07	0.05
Compressibility (%) - ASTM F36	5 ÷ 10	5 ÷ 10	5 ÷ 10	5 ÷ 10
Recovery (%) - ASTM F36	50	50	45	55
Tensile strength - across grain (N/mm2) - DIN 52910	7	8	9	11
Thickness increase after immersion (%) - ASTM F146 Oil IRM 903 for 5 hrs at 150°C ASTM Fuel B for 5 hrs at 23°C	10 10	10 10	8 8	8 8
Specifications	FDA 21 CFR/175.300, DVGW KTW for use with alimentary.	DIN 28091 FA-Z1-0.	DIN 28091 FA-A1-0 DVGW DIN 3536/6, KTW, W270, WRAS WQc, TA-Luft (VDI 2440) Germanische Lloyd	DIN 28091 FA-A1-0 BS 7531 grade Y DVGW DIN 3536/6, KTW, W270, WRAS WQc, BAM (oxygen) TA-Luft (VDI 2440) Germanische Lloyd.

* Service limits are given for proper seating conditions and gasket design. Max. temperature and pressure limits do not apply simultaneously. Lower limits must be considered when sealing aggressive media, or when thermal or mechanical disturbances are relevant.

Standard Supply Data

• Sheet size: 1,500 x 1,500 mm. Upon request: 1,500 x 3,000 mm, 1,500 x 4,500 mm. Tolerance: ± 50 mm. • Sheet thickness: 0.3 ÷ 5 mm. - *Tolerance*: ± 10%

KEMIT	STEAM	400	400 Fe	нт	CF
Aramid fibres, CSM.	Mineral fibres, Aramid fibres, NBR.	Aramid fibres, NBR lamellar graphite.	Aramid fibres, NBR lamellar graphite, wire insertion.	Glass fibres, Aramid fibres, NBR.	Carbon fibres, Aramid fibres, NBR.
For chemically aggressive media: alkaline solutions, several acids, oils and fuels, alcohols. Since it contains no pigments, it is advised for use with high purity fluids.	Recommended in presence of thermal cycling, saturated or overheated steam. Suitable for oils, fuels and solvents.	Use with dynamic loads, as the embedded graphite flakes provides high resistance to temperature and mechanical stress. Suitable for steam, fuels, oils, alkalis and weak acids.	For elevated and fluctuating pressures and temperatures. Suitable for steam, fuels, oils.	Very high temperature applications, in presence of gases, fuels, oils, mild organic and inorganic acids, steam.	Outstanding sealability at high temperatures; gases, hydrocarbon, steam, mild acids and a wide range of strong alkalis. Tightness retention after fire. Excellent flexibility.
200	350	350	400	440	400
150	270	280	350	350	300
120 60	230 100	250 100	230 140	250 100	280 100
25	35 30	35 25	39 36	35 30	35 25
0.06	0.06	0.08	0.5	0.08	0.05
5 ÷ 10	5 ÷ 10	5 ÷ 10	5 ÷ 10	5 ÷ 10	5 ÷ 10
45	55	50	55	50	55
10	7	9	25	8	8
HNO ₃ 40% 18h 23°C: 109 H ₂ SO ₄ 65% 48h 23°C: 89	%7 %7	5 8	5 8	8 8	7 7
DIN 28091 FA-AZ-0 TA-Luft (VDI 2440).	DIN 28091 FA-GA1–0 BS 7531 grade X DVGW DIN 3536/6, KTW, W270, WRAS WQc, BAM (oxygen).	DIN 28091 FA-AC1–0, BS 7531 grade Y BAM (oxygen).	DIN 28091 FA-AC1–St, BS 7531 grade Y Germanische Lloyd.	DIN 28091 FA-GA1–0, BS 7531 grade X DVGW DIN 3536/6, DVGW VP 401, TA-Luft (VDI 2440) Germanische Lloyd.	DIN 28091 FA-AC1–0, BS 7531 grade X DVGW DIN 3536/6, KTW, VP 401 BAM (oxygen) Germanische Lloyd.

Available Surface Finish

4AS anti-stick coating on both sides is standard in all styles.

PTFE, graphite or silicone coating is available upon request.

Chemical Resistance Chart - FASIT®

The information in this chart is intended to be a guideline for the selection of the suitable gasket quality. Because the function and durability of the products depend upon a number of factors that could not be included in the chart, the data may not be used to support any warranty claims.

Suitable

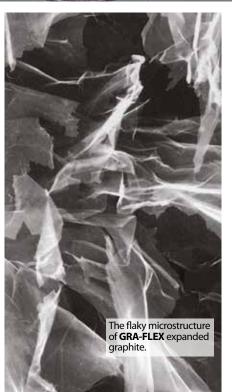
Suitability depends on operating conditions Non suitable

Medium	202-20	5 Oil	Omnia	Kemit	Steam	400	400 FE	HT	CF	Medium	202-205	0il	Omnia	Kemit	Steam	400	400 FE	HT	CF
Acetaldehyde										Ethyl Alcohol									
Acetamide										Ethylbenzene									
Acetic acid										Ethyl Chloride									
Acetic anhydride										Ethyl Ether									
Acetone										Ethylene									
Acetylene										Ethylene Glycol									
Acrylic Acid										Ethylene Oxide									
Acrylonitrile										Fuorine, Gas or Liquid									
Adipic acid										Formaldehyde	_								
Air										Formic Acid									
Aluminum Acetate										Freon 12									
Aluminum Chlorate										Freon 22									
Aluminum Chloride										Freon 134a	-								
Aluminum Sulfate	_		<u> </u>							Fuel Oil	-								
Alums (aluminum potassium sulfate)	_									Furfurol									
Ammonia, Liquid	_									Gasoline									
Ammonia, Gas	-									Glycerine, Glycerol Glycol (Mono Ethylen Glycol)									
Ammonium Bicarbonate Ammonium Chloride										Grease, Petroleum Base	_								
Ammonium Hydroxide, Liquid										Heptane									
Ammonium Nitrate	-									Hexane									
Ammonium Phosphate	-									Hydraulic Oils									
Ammonium Sulfate										Hydrazine									
Ammonium suitate Amyl Acetate										Hydrochloric Acid									
Amyl Alcohol	-									Hydrocyanic Acid									
Aniline, Aniline Oil										Hydrofluoric Acid									
Asphalt	-									Hydrogen									
Barium Chloride										Hydrogen Fluoride									
Barium Hydroxide										Hydrogen Peroxide (Oxygenated Water)									
Barium Sulfide										Hydrogen Sulfide, Dry or Wet									
Beer	-									Isobutane									
Benzaldehyde										Isobutyl alcohol									
Benzene, Benzol										Isooctane									
Benzoic Acid	-									Isopropyl Alcohol									
Bio-diesel										Kerosene (Paraffin Oil)	-								
Borax										Lactic Acid									
Boric Acid										Lead salts	-								
Butadiene										Lithium Bromide									
Butane										Lubricating Oils, Mineral or Refined									
Butyl Alcohol										Magnesium Chloride									
Butyl Methacrilate										Magnesium Hydroxide									
Butyric Acid										Magnesium Sulfate									
Calcium Hydroxide (Limewater)	-									Maleic Acid									
Calcium Hypochlorite										Maleic Anhydride									
Calcium Nitrate (Lime Salrpeter)										Mercury									
Carbon Dioxide										Methane									
Carbon Disulfide										Methanol, Methyl Alcohol									
Carbon Monoxide										Mathyl Aldehyde (Formaldehyde)									
Carbonic Acid										Methyl Chloride									
Chlorine										Methylene Chloride and Dichloride									
Chlorobenzene										Methyl Ethyl Ketone (Butanone)									
Chloroethane										Milk									
Chloroethylene										Mineral Oil ASTM N.1									
Chloroform (Trichloromethane)										Naphta									
Chromates										Nitric Acid									
Chromic Acid										Nitrobenzene									
Citric Acid										Nitrogen									
Coke Oven Gas										Nitrogen Oxide									
Copper Acetate										Nitromuriatic Acid (acqua ragia)									
Copper Chloride										Octane									
Copper Sulfate										Oils, animal and vegetable									
Cresols, Cresylic Acid										Oleic Acid									
Crude Oil										Oxalic Acid									
Cyclohexane										Oxygen, gas									
Cyclohexanone										Ozone									
Dichloromethane (Methylene chloride)										Palmitic Acid									
Diesel Oil, Diesel Fuel										Paraffin									
Dimethyl Ether										Pentane									
Dowtherm										Perchloric Acid									
Ethane										Perchloroethylene									
Ethyl Acetate										Petroleum Oils									

Medium	202-205	0il	Omnia	Kemit	Steam	400	400 FE	HT	CF
Phenol									
Phosgene									
Phosphoric Acid									
Phtalic acid									
Polyacrilonitrile									
Potassium Acetate									
Potassium Bicarbonate									
Potassium Carbonate (Potash)									
Potassium Chloride									
Potassium Chromate									
Potassium Cyanide									
Potassium Hydroxide (Caustic Potash)									
Potassium lodide									
Potassium Nitrate, Acqueous Solution	-								
Potassium Nitrate, Melt (Saltpeter)									
Potassium Sulfate									
Propane	-								
Propyl Alcohol									
Propylene									
Prussic acid, Hydrocyanic Acid									
Salicylic Acid									
Silicone Oil									
Silver Nitrate									
Soap									
Sodium Aluminate									
Sodium Bicarbonate, Baking Soda									
Sodium Bisulfate									
Sodium Carbonate, Soda									
Sodium Chlorate, Acqueous Solution									
Sodium Chloride									
Sodium Hydroxide									
Sodium Hypochloride (bleach)									
Sodium Nitrate (Chile Saltpeter)									
			_						

Medium	202-205	0il	Omnia	Kemit	Steam	400	400 FE	HT	CF
Sodium Perborate									
Sodium Phosphate									
Sodium Silicate									
Sodium Sulfate									
Sodium Sulfide									
Stannic Chloride									
Starch									
Steam, Saturated									
Steam, Superheated									
Stearic Acid									
Styrene									
Sugar Solution									
Sulfur Dioxide									
Sulfuric Acid									
Sulfurous Acid									
Tannic Acid									
Tar									
Tartaric Acid									
Tetrachloroethylene (Perchlorate)									
Toluene									
Transformer Oil (Mineral Type)									
Trichloroethane									
Trichloroethylene									
Urea									
Vinyl Acetate									
Vinyl Methacrylate									
Water, Distilled									
Water, Seawater									
Water, Tap									
Wines									
Xylene									
Zinc Chloride									
Zinc Sulfate									

Expanded Flexible Graphite Gasket Materials **GRA-FLEX**®


Structure

It can be seen as a paradox that graphite, a very soft and pliant substance, is formed of the same element - carbon - which produces the diamond, the hardest material known in nature.

The difference between the two materials is all in their crystalline structure: while diamond shows a tetrahedral

crystal lattice (sp3 hybridisation) symmetric in the three directions, graphite's structure is hexagonal (sp2 hybridisation), with carbon atoms tightly bonded within the planes and loosely bonded between the planes.

Such an asymmetry is the cause of the peculiar anisotropy found in the mechanical, thermal and electrical properties of the graphite, as well as of its inherent lubricity.

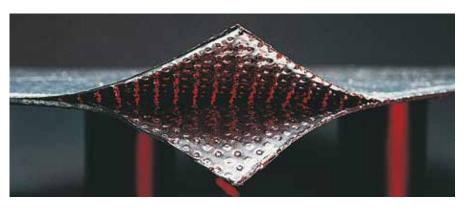
GRA-FLEX is available as homogeneous foil, in roll or sheet format, or as inserted sheet.

GRA-FLEX foil is mainly used for fabrication of laminated gasket sheets, of semi-metallic gaskets, such as spiral-wound, metal-jacketed and kam-profile gaskets, of sealing rings and of smooth or corrugated tapes.

Density

The standard density of GRA-FLEX graphite is 1 g/cm3, but it can be requested in the range 0.7 - 1.3 g/cm3: higher density corresponds to lower gas permeability and higher mechanical strength, but also to lower conformability.

Purity


The purity of graphite is evaluated in terms of its carbon content, or, conversely, in terms of its content of ashes, which represent the residue after burning the graphite in air.

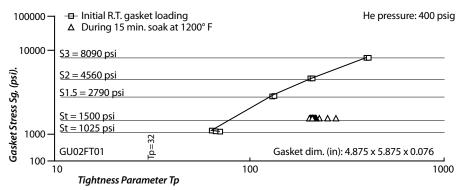
Such ashes contain mainly harmless elements, like silicon and aluminium, but also contaminants, usually residues from the mineral gangue of the natural graphite, such as quartz, silicates or mica: these disturb the orderly laminar structure of the graphite, producing channels and irregular pores that reduce the sealing effectiveness of the gasket. Moreover, as the ash content increases, the mechanical strength is also reduced and there is a greater risk of corrosion.

Properties

- Thermo-mechanic strength: this characteristic leads to excellent retention of the gasket stress, even at very high temperature and in presence of thermal and dynamic cycles and shocks. Because the gasket creep is so low, bolt re-tightening is no longer necessary.
- Chemical resistance: GRA-FLEX is resistant to most media, including steam, hydrocarbons and most acids. Exceptions are strong oxidizing fluids.
- **Temperature stability:** since the material elasticity is due to its own physical structure and not to elastomeric components, this remains suitable from cryogenic (-200°C) to extremely high temperatures (+3000°C in inert or reducing atmosphere).
- **Conformability:** GRA-FLEX good conformability allows its use with practically any type of flange,

For this reason standard grade GRA-FLEX ash content is 1%, that is lower than that of the majority of graphites currently available on the market. In expanded graphite there are usually traces of sulphur, chlorine and fluorine: under certain conditions, these elements can contribute to activate corrosion processes in metallic assemblies. In such cases, one can use "premium" grade GRA-FLEX, where such impurities are further limited.

Purity grades of GRA-FLEX® expanded graphite:


Grade:			STANDARD	PREMIUM
Ashes	ASTM C 561	%	< 1	< 0,5
Leachable chloride ions	ASTM F 1277	ppm	< 40	< 20
Leachable fluoride ions	ASTM F 1277	ppm	< 40	< 20

including light, very large size, irregular and poorly planar flanges, without the need of high gasket thickness.

- No ageing: GRA-FLEX does not lose its resiliency with time, either in storage or in service, even if exposed at high temperature. GRA-FLEX gaskets are thus recommended for joints that may relax over time.
- Fire resistance: being free of organic components, GRA-FLEX gaskets are ideal for applications where the seal must be retained during and after a fire, such as with toxic or flammable media.
- Health safety: GRA-FLEX does not contain toxic components, nor any type of fibres.

GRA-FLEX GR 1/16" Thick Sheet Gasket. Gasket Stress vs Tightness for Entire Test.

GRA-FLEX®

Inserted Sheet Style	S	GR	R
Insert	None.	Perforated tanged stainless steel sheet 0.10 mm thick.	Smooth stainless steel AISI 316 sheet 0.05 mm thick.
Main characteristics and applications	Typically used as filler for semi-metallic gaskets. It can be used also for gaskets where no insert is required.	Universal purpose for a high temperature and pressure applications, in presence of mechanical and thermal cycles and shocks. Suitable for steam, hydrocarbons and most chemicals.	High temperature applications. Very homogeneous distribution of the assembly load. Easy to cut and handle.
Max. operating temperature (°C)* Medium: air or oxidizing media	450	450	450
Medium: reducing or inert, but joint exposed to air	550	550	550
Medium and joint atmosphere: reducing or inert	3000	700	700
Max. operating pressure (bar)*	80	120	80
Stress retention (N/mm2) - DIN 52913 16 hrs, 300°C, 50 N/mm2	49	49	>48
Specific leakage rate (mg/m.sec) DIN 3535/6	0.05	0.08	0.05
Compressibility (%) - ASTM F36	40 ÷ 50	35 ÷ 45	40 ÷ 50
Recovery (%) - ASTM F36	10÷15	15 ÷ 20	10÷15
Compression modulus (%) DIN 28090/2 at room temp. Eksw at elevated temp. Ewsw/300°C Percentage creep relaxation (%) DIN 28090/2	45 <4	32 1.2	41 1.1
at room temp. Ekrw at elevated temp. Ewrw/300°C Recovery R (mm)	4.5 4.5 0.08	4.5 4 0.085	4.5 4 0.08
Specifications	DIN 28091-4 GR-O-0.	DIN 28091-4 GR-O-1M-Cr FITT fire-safety.	DIN 28091-4 GR-O-1K-Cr.

* Service limits are given for proper seating conditions and gasket design. Max. temperature and pressure limits do not apply simultaneously. Lower limits must be considered when sealing aggressive media, or when thermal or mechanical disturbances are relevant.

Standard Supply Data

All standard sheet styles are made with "standard" grade GRA-FLEX, but they are also available from "premium" grade. **S style density:** 1 g/cm3 Upon request: 0.7 ÷ 1.3 g/cm3 *Tolerance*: ± 5%

• Sheet size: 1,000 x 1,000 or 1,500 x 1,500 mm. *Tolerance:* ± 50 mm.

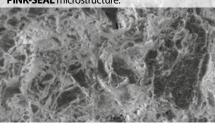
RX	G	Ν	AUTO	ALU
Multiple smooth stainless steel AISI 316 sheets 0.05 mm thick.	Fiberglass fabric 0.2 mm thick.	Stainless steel wire net.	Perforated tanged carbon steel sheet 0.20 mm thick.	Alluminum foil on both faces.
Multiple stainless steel inserts allow the gasket to withstand very high gasket stresses and, therefore, to be used at very high service pressures.	High temperature and moderate pressure applications. Maximum chemical resistance. Easy to cut and handle.	High temperature applications. Good mechanical strength.	Extra strong insert, mainly used for automotive application.	High temperature and moderate pressure applications. Maximum chemical resistance. Easy to cut and handle.
450	450	450	450	450
550	550	550	550	550
700 200	600 60	700 80	700 150	650 60
49	>45	>48	>48	>48
0.05	0.08	0.08	0.08	0.05
35 ÷ 45	40 ÷ 50	40 ÷ 50	40÷50	40 ÷ 50
15 ÷ 20	10 ÷ 15	10 ÷ 15	10 ÷ 15	10÷15
30÷40 <4	38 1	35 1.5	30 1.5	38 <4
4 4	5 4.5	4.5 4	4.5 4	4.5 4.5
DIN 28091-4 GR-O-3K-Cr.	DIN 28091-4 GR-O-1K-Z.	DIN 28091-4 GR-O-1M-Cr.	DIN 28091-4 GR-O-1M-St.	DIN 28091-4 GR-O-2K-Al.

• Foil roll thickness: 0.25 ÷ 1 mm. *Tolerance*: ± 5%.

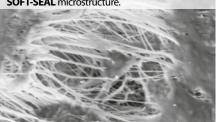
Anti-stick coating available upon request.

GUAFLON[®] line includes several types of PTFE-based gasket sheets, which are designed mainly for application in the chemical, petrol-chemical, food and pharmaceutical industry.

PTFE


The PTFE (poly-tetra-fluoro-ethylene, formula (CF2)n) owes its fundamental characteristic - an outstanding chemical resistance - to a molecular structure in which very long linear chains of carbon atoms are fully wrapped and protected by fluorine atoms.

The carbon-fluorine bond is the strongest of all organic chemistry: as a result, its stability is barely affected by thermal excitation or chemical attacks.


Because of its structure, the PTFE is resistant to almost all chemicals,

PINK-SEAL microstructure.

SOFT-SEAL microstructure

exceptions being melt alkaline metals, fluorine gas, hydrogen fluoride and materials that can produce these compounds; while its physical properties remain suitable for use throughout an extremely wide range of operative temperatures: from cryogenic values up to about 300°C.

Other characteristics which make PTFE an excellent material for gasket application are:

- excellent ageing resistance
- physiological safety relevant for alimentary use
- no contamination of confined media - relevant for uses with high purity media, i.e. pharmaceutical and painting industry
- anti-stick surface - relevant when flanges have to be opened frequently
- low abrasion coefficient relevant for dynamic seals

A remarkable property of GUAFLON

effectiveness, defined by low values

The expanded PTFE that makes the GUAFLON SOFT-SEAL does not contain

microscopic cellular structure that leads

to outstanding compressibility, especially

fillers, but owns its properties to a

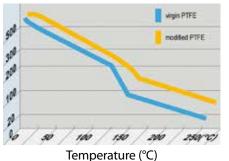
Permeability (cm³ / m² • d • bar)

gaskets is in their high tightness

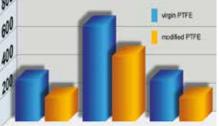
of gasket constants, resulting

in minimized leakage rates.

Expanded PTFE


Fillers

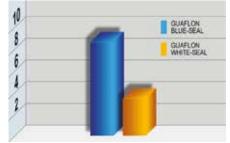
The main drawback of PTFE is its relatively poor mechanical strength, due to the absence of bonds or electrostatic forces between the molecular chains: this causes gaskets that are made from pure PTFE to be easily affected by plastic deformation, even at room temperature (cold flow). In order to overcome this problem, GUAFLON sheets are typically filled with inorganic particles, such as glass fibers or silica grains, that increase the material stability under compression.


Modified PTFE

Some GUAFLON styles are obtained from a particular variety of PTFE, known "as modified PTFE", whose characteristic is a modification in the polymeric structure (integration of the PPVE modifier at low concentration in the polymer linear chain). The advantages of the modified PTFE are greater strength against compressive stress, higher elasticity, lower porosity and permeability.

Elastic Modulus (N/mm²)

DIN 53380, sheet thickness: 1mm



SO, at 23°C HCl at 50°C Cl, at 50°C

As a consequence, GUAFLON gaskets are especially recommended for the control of fugitive emissions, in presence of polluting or hazardous media.

suitable for application with light, irregular or poorly planar flanges. Because expanded PTFE gaskets becomes very thin when assembled between the flanges, their ability to retain the gasket stress is excellent even at high loads and temperatures.

Permanent Deformation (%) 15 N/mm², 100 hrs, 23°C.

GUAFLON®

Sheet Style	BLUE-SEAL	WHITE-SEAL	PINK-SEAL	SOFT-SEAL
Composition	Virgin PTFE, glass fibres.	Modified PTFE, glass fibres.	Modified PTFE, silica filler.	Expanded PTFE.
Main characteristics and applications	Price effective. Suitable for a wide range of applications with chemicals at low bolt loads.	Universal use for most chemically aggressive media and high tightness requirements.	For high mechanical loads, where superior recovery and compression strength are requested.	Maximum chemical resistance. Suitable for very high pressure. Extra compressibility to match any flange irregularities and assure a tight seal even at low bolt loads.
Recommended Service Limit (°C)* Max. short term temperature Max. continuous temperature Max. operating pressure (bar)	260 210 60	260 260 80	260 260 85	315 270 200
Stress retention (N/mm2) - DIN 52913 16 hrs, 150°C, 30 N/mm2	14	16	17	23
Specific leakage rate (mg/m.sec) DIN 3535/6 λ2.0 (30 N/mm2, N2 at 40 bar)	0.05	0.01	0.01	< 0.01
Compressibility (%) - ASTM F36	7 ÷ 15	7 ÷ 15	7 ÷ 15	68
Recovery (%) - ASTM F36	35	45	55	11
Tensile strength - across grain (N/mm2) - DIN 52910	17	12	12	14.5
Compression modulus (%) DIN 28090/2 at room temp. Eksw at elevated temp. Ewsw/300°C Percentage creep relaxation (%) DIN 28090/2 at room temp. Ekrw at elevated temp. Ewrw/300°C Recovery R (mm.) - DIN 28090/2	11 45 3 4 0.08	7 37 3 5 0.09	8 15 3 4 0.07	
Specifications	DIN 28091 TF-G-O	DIN 28091 TF-G-O	DIN 28091 TF-M-O	DIN 28091 TF-O-O FDA 21 CFR/177.1550

* Service limits are given for proper seating conditions and gasket design. Max. temperature and pressure limits do not apply simultaneously. Lower limits must be considered when thermal or mechanical disturbances are relevant.

Chemical Resistance Chart - GRA-FLEX® & GUAFLON®

	GRAFLEX		GUA	LON			GRAFLEX		GUA	FLON	
Medium	All Styles	Blue-Seal	White-Seal	Pink-Seal	Soft-Seal	Medium	All Styles	Blue-Seal	White-Seal	Pink-Seal	Soft-Sea
Acetaldehyde						Chloroethane					
Acetamide						Chloroethylene					
Acetic acid						Chloroform (Trichloromethane)					
Acetic Anhydride						Chloromethyl Methyl Ether					
Acetone						Chloroprene	-				
Acetonitrile						Chlorosulfonic Acid					
Acetylene						Chromates					
Acrylamide						Chromic Acid					
Acrylic Acid						Chromic Anhydride					
Acrylic Anhydride						Chromic Trioxide					
Acrylonitrile						Citric Acid					
Adipic acid						Coke Oven Gas					
Air						Copper Acetate					
Aluminum Acetate						Copper Chloride	-				
Aluminum Chlorate						Copper Sulfate	-				
Aluminum Chloride						Creosote	-				
Aluminum Fluoride						Cresols, Cresylic Acid	_				
						Crude Oil	_				
Aluminum Nitrate	_						_				
Aluminum Sulfate						Cumene (Isopropyl Benzene)	_				
Alums (aluminum potassium sulfate)	_					Cyclohexane	_				
Ammonia, Liquid						Cyclohexanone					
Ammonia, Gas						Decalin					
Ammonium Bicarbonate						Dibenzylether					
Ammonium Chloride						Dibutyl Phthalate					
Ammonium Hydroxide, Liquid						Dichlorobenzene					
Ammonium Nitrate						Dichloroethane					
Ammonium Phosphate						Dichloroethylene					
Ammonium Sulfate						Dichloroethyl Ether					
Amyl Acetate						Dichloromethane (Methylene chloride)					
Amyl Alcohol						Dichloropropane					
Aniline, Aniline Oil						Diesel Oil, Diesel Fuel					
Asphalt						Diethanolamine					
Barium Chloride						Dimethyl Ether					
Barium Hydroxide						Dimethylformamide					
Barium Sulfide						Dinitrotoluene					
Beer						Dioxane	_				
Benzaldehyde						Diphenylhydrazine					
Benzene, Benzol						Dowtherm	_				
Benzidine						Ethane	_				
Benzoic Acid						Ethyl Acetate	_				
Benzonitrile						Ethyl Acrylate	_				
Benzotrichloride						Ethyl Alcohol	_				
Benzoyl choride						Ethylbenzene	-				
Benzyl alcohol	_					Ethyl Chloride					
Benzyl Chloride						Ethyl Ether					
Bio-diesel						Ethylene					
Biphenil						Ethylene Bromide					
Black Sulfate Liquor	_					Ethylene Dichloride	_				
Borax	_					Ethylene Glycol	_				
Boric Acid						Ethylene Oxide					
Bromine						Fuorine, Gas or Liquid					
Bromine Trifluoride						Fluorine dioxide					
Butadiene						Fluorosilicic acid					
Butane						Formaldehyde					
2-Butadone						Formic Acid					
Butyl Acetate						Freon 12					
Butyl Alcohol						Freon 22					
n-Butyl Amine						Freon 134a					
Butyl Methacrilate						Fuel Oil					
Butyric Acid						Furfurol					
Calcium Hydroxide (Limewater)						Gasoline					
Calcium Hypochlorite						Glycerine, Glycerol					
Calcium Nitrate (Lime Salrpeter)						Glycol (Mono Ethylen Glycol)					
Caprolactam						Grease, Petroleum Base					
Captan						Green Sulfate Liquor					
Carbon Dioxide						Heptachlor					
Carbon Disulfide						Heptane					
Carbon Monoxide						Hexachlorobenzene					
Carbon Tetrachloride						Hexachloroethane					
Carbonic Acid						Hexamethylene Diisocyanate					
Carbonyl Sulfide						Hexane					
Cesium melt						Hydraulic Oils					
Chlorine, Dry						Hydrazine					
Chlorine, Wet						Hydrobromic Acid					
Chlorine Dioxide						Hydrochloric Acid					
Chlorine Trifluoride						Hydrocyanic Acid					
Chloroacetic acid						Hydrofluoric Acid					
Chlorobenzene						Hydrofluorosilic Acid					
						,,					

GUAFLON Blue-Seal White-Seal Pink-Seal Soft-Seal

	GRAFLEX		GUA	LON			GRAFLEX
Medium	All Styles	Blue-Seal	White-Seal	Pink-Seal	Soft-Seal	Medium	All Styles
Hydrogen						Potassium Nitrate, Melt (Saltpeter)	
Hydrogen Fluoride						Potassium Permanganate	
Hydrogen Peroxide (Oxygenated Water)						Potassium Sulfate	
Hydrogen Sulfide, Dry or Wet						Propane	
Hydroquinone						Propyl Alcohol	
sobutane	_					Propyl Nitrate	
sobutyl alcohol	_					Propylene	
sooctane	_					Propylene Dichloride	
sopropyl Alcohol						Propylene Oxide	
Kerosene (Paraffin Oil)						Prussic acid, Hydrocyanic Acid	
Lactic Acid						Pyridine	
Lead salts	_					Salicylic Acid	
Lithium Bromide						Silicone Oil	
Lithium melt						Silver Nitrate	
Lubricating Oils, Mineral or Refined						Soap	
Lye	_					Sodium Aluminate	
Magnesium Chloride	_					Sodium Bicarbonate, Baking Soda	
Magnesium Hydroxide						Sodium Bisulfate	
Magnesium Sulfate						Sodium Carbonate, Soda	
Maleic Acid						Sodium Chlorate, Acqueous Solution	_
Maleic Anhydride						Sodium Chloride	
Mercury						Sodium Cyanide	
Methane						Sodium melt	
Methanol, Methyl Alcohol						Sodium Hydroxide	
Methylacrilic Acid						Sodium Hypochloride (bleach)	
Mathyl Aldehyde (Formaldehyde)						Sodium Nitrate (Chile Saltpeter)	
Methyl Bromide						Sodium Perborate	
Methyl Chloride						Sodium Peroxide	
Methylene Chloride and Dichloride						Sodium Phosphate, Monobasic	
Methyl Ethyl Ketone (Butanone)						Sodium Phosphate, Dibasic or Tribasic	
Methyl Isobutil Ketone						Sodium Silicate	
Milk						Sodium Sulfate	
Mineral Oil ASTM N.1						Sodium Sulfide	
Naphta						Sodium Superoxide	
Nitric Acid						Stannic Chloride	
Nitrobenzene						Starch	
Nitrogen						Steam, Saturated	
Nitrogen Oxide, Wet						Steam, Superheated	
Nitrogen Oxide, Dry						Stearic Acid	
Nitrogen Tetroxide						Styrene	
Nitromuriatic Acid (acqua ragia)						Sugar Solution	
Nitrosulfuric Acid						Sulfur Chloride	
Octane						Sulfur Dioxide	
Oils, animal and vegetable						Sulfur, Molten	
Oleic Acid						Sulfur Trioxide	
Oxalic Acid						Sulfuric Acid	
Oxygen, gas						Sulfuric Acid, Fuming (Oleum)	
Ozone						Sulfurous Acid	
Palmitic Acid						Tannic Acid	
Paraffin						Tar	
Pentane						Tartaric Acid	
Perchloric Acid						Tetrachlorethane	
Perchloroethylene						Tetrachloroethylene (Perchlorate)	
Petroleum Oils						Thionyl Chloride	
Phenol						Titanium Tetrachloride	
Phosgene						Toluene	
Phosphate Esters						Transformer Oil (Mineral Type)	
Phosphoric Acid						Trichloroethane	
Phosphorus Trichloride						Trichloroethylene	
Phtalic acid						Triethanolamine	
Phtalic Anhydride						Triethylamine	
Piperidine						Trimethylaluminum	
Polyacrilonitrile						Uranium Hexafluoride	
Potassium melt						Urea	
Potassium Acetate						Vinyl Acetate	
Potassium Bicarbonate						Vinyl Bromide	
Potassium Bromate, Acqueous Solution						Vinyl Chloride	
Potassium Carbonate (Potash)						Vinyl Methacrylate	
Potassium Carbonate (Potash)						Water, Distilled	
Potassium Chloride						Water, Distilled Water, Seawater	
Potassium Chromate						Water, Tap	
Potassium Cyanide						Wines	
Potassium Hydroxide (Caustic Potash)						Xylene Zing Chlorida	
Potassium Iodide						Zinc Chloride	
Potassium Nitrate, Acqueous Solution						Zinc Sulfate	

Application Quality Control Parameters

Joint tightness requires that the gasket surface load, applied through bolt torque, remains always between defined minimum and maximum limits, which depend on operating conditions and joint geometry.

In general higher-loaded, but not over-loaded, gaskets have a longer life and show better resistance against aggressive media than under-loaded ones.

Retorquing: Every gasket settles, especially after a long period without loading. Therefore bolts should be retorqued to 100% before commissioning. FASIT and GUAFLON gaskets that have been already exposed to high or cryogenic temperature should be retorqued only in cold conditions, with great care and in several steps, to prevent destruction of the hardened organic components.

Low Temperature service below -40°C will harden organic binders. To ensure safe service at low temperatures we recommend that FASIT and GUAFLON gaskets are fitted dry at room temperature only.

Gasket thickness is important and a given material should be selected as thin as possible, yet sufficiently thick to accommodate surface imperfections and irregularities of the flanges.

A thinner gasket requires less load to achieve a tight seal, it can accommodate higher gasket loads and has better torque retention properties which helps maintain a good seal throughout the lifetime of the gasket. Gasket width has a significant effect on the maximum permissible gasket stress. We recommend a minimum thickness to width ratio of 1/5. Storage conditions must be respected to ensure long life to gasket materials and gaskets.

We recommend to store flat at:

- temperature < 25°C;
- relative humidity <60%;
- away from sources
- of UV/Natural light.

Looking for the right product for your project?

Need specification help for your system?

Our Engineering team is available for assistance no matter where you are located.

Euroguarco Divisions

Piping Conforming to ANSI, BWG, AWG, BS and other international standards: line pipe, boiler pipe, hat-exchanger tube, tube expanders, torque wrenches, condenser tube, boiler and heater tubes, U-tubes, assembly bundle tubes, finned tube for air-cooling systems; Carbon steel, stainless steel, Cu-Ni, admirality brass, cast iron, special alloys.

Valve

Gate, Swing-Check, Globe valves. Ball valves (trunnion, floating, through conduit), wrench and gear operator. Forged and cast steel types.

Butterfly, Wafer-type,-Diaphragm and Knife-Gate valves. Valves in bronze and brass: gate, globe, swing check and ball type. Conforming to dimensional standards ASME, ANSI, API, BS.

Materials: carbon steel, stainless steel, cast iron, ductile iron and alloys. Sizes from 1/4" to 60", depending on the type of valve. Rating from 150 to 2500 Lbs.

Insulation

High temperature textiles (fabrics, tapes, ropes, sleeves), insulating blankets, felts, millboards, papers and mouldables, pre-formed insulating

jackets, welding blankets, polymeric foam insulating boards, acoustic boards and sound barriers, fire-resistant textiles, compensation joints. Speciality items for marine, oil & gas, steel, glass industries.

Gasket

Conforming to ASME, DIN, EN and BS standards: compressed jointing sheets FASIT[®],flexible graphite GRAFLEX[®], PTFE based sheets GUAFLON[®], mica

compound sheets GUARMICA®, gland packings, o-rings,die-cut gaskets, Weaveline gaskets, spiral-wound gaskets, metal-jacketed gaskets, ring-joint gaskets, flat metal gaskets, laminated gaskets, rubber gaskets, cam-profile gaskets, textile gaskets, manhole gaskets, etc.

Engineering

Often in cooperation with partners, Euroguarco has performed several turn-key and sub-contract works for the engineering, supply and construction of industrial

and civil projects. Based on the project,

Based on the project, Euroguarco can offer his customers with advantageous solution by reducing the cost impact of many services that normally EPCs give in outsource.

- Some cases: • Piping system engineering,
- fabrication and testing
- Pig Launcher & Receiver (Iraq, Libya)
- Gas/Oil Tanker Jetty (Iran)
- Gas, oil or finished products
- Pipeline project (Turkey, Iran, Iraq) • Slug Catcher (Iran)
- Steel & alloy piping structure (Mexico)
- Air and water cooling systems (Iraq)
- Insulation cut-on-design and supply for piping and pressure vessels (Kazakhstan, Italy)
- Flares and burners (Iraq)
- LPG storage and distribution system (Ghana, Tanzania)
- LPG filling station (Tanzania)
- Railway project (Ghana)
- Pumping station (Russia)
- Stations on skid (Iraq)

Euroguarco is also active in environment friendly projects, in cooperation or in consortium with specialized partner companies.

Selected References

- ABB (Italy)

- ABB (Italy)
 ADOC Japan (UAE)
 Agip (Italy)
 Agip KCO (Kazakhstan)
 AGOCO (Libya)
- Ameira Petroleum (Egypt)
- Ansaldo Energia (Italy)
- ASRY Shipyards (Bahrain)
- Attok Refinery (Pakistan)
 Bangladesh Gas Field Co. (Bangladesh)
- Banias Power Co. (Syria)
- Banias Refinery (Syria)
 Bateman-Litwin (France)
- BP (Iraq)
- Brega (Ľibya) Cairo Refining (Egypt)
- CERN (Switzerland)
- Daura Refinery (Iraq)
- Dongang Boiler Group (China)

- Eastern Refinery (Bangladesh)
- EcoPetrol (Colombia) Eni (Italy)
- Enppi (Égypt) Foster Wheeler (Italy)
- Gas Transmission Co. Ltd (Bangladesh)
- GAZPROM (Russia)
- GE Nuovo Pignone (USA, Italy)
- Homs Refinery (Syria)
- Jordan Petroleum Refinery (Jordan)
- LukOil (Russia)
- MAERSK OIL (Kazakhstan)
- Magotteaux (Belgium)
- Mari Gas Co. (Pakistan)
- McDermott (USA)
- Midland Refinery (Iraq)
- National Refinery (Pakistan)
- NIGC (Iran)
- North Oil Company (Iraq)
- NPCC (UAE)
 OPET Petrol (Turkey)
- ORYXGAS (Switzerland)

- PDI-Pemex (Mexico)
- Petrojet (Egypt)
 Qatar Gas (Qatar)
 Ras Gas (Qatar)
 Saipem (Italy)

- SCOP (Iraq)
 Sirte Oil Co. (Libya)
- Snam (Italy)
 South Oil Company (Iraq)
- KalaNaft (Iran)
- Kordestan Petrolchemical (Iran)
- MAPNA (Iran)
- Nargan (Iran)
- POGC (Iran)
- SungKyong (South Korea)
- Tecnimont (Italy)
- Tehran Refinery (Iran)
- Waha Oil Company (Egypt)

Euroguarco SpA

Headquartes

Via Terralba - Loc. Pietralba 19021 Arcola (La Spezia) - Italy Tel. +39 0187 562611 Fax +39 0187 562955

info@euroguarco.com

Industrial Unit

Via Leonardo Da Vinci, 6 A-B 26020 Ticengo (Cremona) - Italy Tel. +39 0374 71006 Fax +39 0374 71277

